First Sustainable Nanotechnology Organization Conference , NOV 4~6, 2012

Fate of Engineered Nanomaterials in Constructed Wetlands

Fariya Sharif Arizona State University, Tempe, AZ.

The Big Picture

Technological revolutions

Pollution from residuals of products & tools (Contaminants of Emerging Concerns)

Natural attenuation (Environmentally benign)

Significance on Water Quality

Meybeck & Helmer, 1989

Transformation in Aquatic Environment

Contaminant Flow in the Environment

Current Knowledge on Fate of ENMs

Detection in Environmental matrices/samples (Including consumer products) Fate and transformation (Simulated treatment processes)

Sorption to WWTP biomass (Restricts the use of wastewater biosolids for land application) Conversion to sulfide species (sulifidation) e.g. Ag₂S, ZnS

Windler et al., 2012,Lowry et al., 2012 Kaegi et al., 2011, Jarvie et ak., 2009 Kiser et al., 2009, Benn and Westerhoff, 2008

Constructed Wetlands- 'Natural Treatment Systems'

Currently used to treat bulk and organic pollutants

Limitations for application as a treatment system

 Contaminants loading rate affects hydraulic retention time (HRT), wetlands size

Wetland Microcosm Approach

Microcosms mimic

□Growing plants of wetlands senescing in water □Leaching of DOC during plant decomposition

□Significance on Fate of ENMs

Organics can stabilize ENMs

ENMs can sorb onto organic rich plant biomass

Investigation Using Microcosm Studies

- Effect of HRT on ENM removal
- Possible Removal mechanisms
 Approach- 'Pulse input of ENMs'

Aqueous fullerene (aq-nc₆₀)

Functionalized Nano silver (fn-Ag)

ENMs in WWTP biomass

Comparable Removal of aq-*n*C₆₀ and *fn*-Ag with Organic CECs in Microcosms

Mass recovery decreases with increasing HRT 'Better removal at longer HRT'

aq-nC₆₀ and fn-Ag removal in Microcosms

Higher Plant biomass (accumulation with time)

Sorption to Wetland Plant Materials

Effect of HRT on ENM Removal

Size Distribution of Ag NMs in Microcosm Effluent

Silver is "larger" coming out than going in

Colloidal organics and humics exit wetlands

□Facilitated transport of *fn*-Ag (and potentially other CECs) on wetland colloids

Influence of Wetland Water Matrix

DOC leached from hydrated wetland plants stabilize ENMs

Effect of Surface Coating on Ag NM Stability and Sorption

Stability of different types of surface coated Ag NMs

PVP-coated, Gum Arabic (GA) and Carboxylated

Conclusions

Design and operating criteria (HRT, plant growth) influences ENM removal in constructed wetlands.

Sorption onto the wetland plant materials can be considered a major removal mechanism for ENMs in wetlands.

Wetland water matrix (ionic strength, DOC leached by plants) significantly affects fate of ENM in the aquatic environment.

Acknowledgements

- Prof. Paul Westerhoff & his research group, ASU
- Yifei Wang, Thomas Bruton, ASU
- Prof. Pierre Herckes, Prof. Rolf Halden, ASU
- Center for Environmental Implications of Nanotechnology (CEINT), Duke University
- #4334, Water Research Foundation (WRF)

Thank you.